A-PDF Watermark DEMO: Purchase from www.A-PDF.com to remove the watermark

LO EC, EE

| US                                                                                       | N                                                                                    |                                                                                                                           | 10AL51                   |  |  |  |
|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------|--|--|--|
| Fifth Semester B.E. Degree Examination, December 2012<br>Management and Entrepreneurship |                                                                                      |                                                                                                                           |                          |  |  |  |
| Ti                                                                                       | ime: 3                                                                               | B hrs. Max. M                                                                                                             | arks:100                 |  |  |  |
|                                                                                          | Note: Answer any FIVE full questions, selecting atleast TWO question from each part. |                                                                                                                           |                          |  |  |  |
|                                                                                          | $\underline{PART} - \underline{A}$                                                   |                                                                                                                           |                          |  |  |  |
| 1                                                                                        | a.<br>b.                                                                             | Explain different levels of management.<br>What is scientific management? Explain                                         | (10 Marks)<br>(10 Marks) |  |  |  |
| 2                                                                                        | a.<br>b.                                                                             | What are the different steps involved in planning?<br>What are single use and standing plans? Explain them with examples. | (10 Marks)<br>(10 Marks) |  |  |  |
|                                                                                          |                                                                                      | A SSHER                                                                                                                   | (10 Marks)               |  |  |  |
| 3                                                                                        | a.<br>b.                                                                             | Briefly explain the principles of organization.<br>Discuss centralization v/s decentralization.                           | (10 Marks)<br>(10 Marks) |  |  |  |
| 4                                                                                        | a.                                                                                   | Briefly explain comparison of Maslow's and Herzberg theories of Human motiva                                              | tion.                    |  |  |  |
|                                                                                          | b.                                                                                   | What are different steps involved in controlling process?                                                                 | (10 Marks)<br>(10 Marks) |  |  |  |
|                                                                                          |                                                                                      | <u> PART – B</u>                                                                                                          |                          |  |  |  |
| 5                                                                                        | <b>a</b> .                                                                           | Who are Intrapreuners? Explain the difference between Entrepreneurs and Intrap                                            | oreuners.<br>(10 Marks)  |  |  |  |
|                                                                                          | b.                                                                                   | Explain the barriers involved in entrepreunership.                                                                        | (10 Marks)               |  |  |  |
| 6                                                                                        | 6 a.<br>b.                                                                           |                                                                                                                           | (10 Marks)<br>(10 Marks) |  |  |  |
| 7                                                                                        | 7 a.<br>b.                                                                           |                                                                                                                           | (10 Marks)<br>(10 Marks) |  |  |  |
| 8                                                                                        | 3 a.<br>b.                                                                           |                                                                                                                           | (10 Marks)<br>(10 Marks) |  |  |  |
|                                                                                          | e-                                                                                   |                                                                                                                           |                          |  |  |  |

\*\*\*\*\*

**Digital Signal Processing** Time: 3 hrs. Max. Marks:100 Note: 1. Answer FIVE full questions, selecting at least TWO questions from each part. 2. Use of normalized Chebyshev and Butterworth prototype tables are NOT ALLOWED. <u> PART – A</u> Find the N-point DFT of x(n) if  $x(n) = \begin{cases} \frac{1}{3}; & 0 \le n \le 2\\ 0; & \text{otherwise} \end{cases}$ . 1 a. (08 Marks) Two finite sequences x(n) = [x(0), x(1), x(2), x(3)] and h(n) = [h(0), h(1), h(2), h(3)] have b. DFTs given by  $X(R) = DFT \{x(n)\} = \{1, J, -1, -J\}; H(R) = DFT \{h(n)\} = \{0, 1+J, 1, 1-J\}.$ Use the properties of the DFT and find the following: i)  $X_1(R) = DFT \{h(0), -h(1), h(2), -h(3)\}$  $X_2(R) = DFT \{y(n)\}$  where  $y(n) = x(n) \bigotimes h(n)$ ii)  $X_3(R) = DFT\{x(0), h(0), x(1), h(1), x(2), h(2), x(3), h(3)\}$ iii) (12 Marks) 2 a. Consider a length - 12 sequence defined for  $0 \le n \le 11$ ,  $x(n) = \{8, 4, 7, -1, 2, 0, -2, -4, -5, 1, 4, 3\}$ with 12-point DFT given by X(R),  $0 \le R \le 11$ , evaluate the following function without with 12-point Example 2 computing DFT,  $\sum_{R=0}^{11} e^{-\frac{J4R}{6}} \times (R)$ (05 Marks) Determine  $x_3(n) = x_1(n) \bigotimes_{8} x_2(n)$  for the sequences,  $x_1(n) = e^{j\pi n}$ ;  $0 \le n \le 7$ ; b.  $x_2(n) = u(n)-u(n-5)$ . Sketch all the sequences. Use time domain approach. (08 Marks) Show that: c. Real and even sequence has real DFT. i) ii) Multiplication of two DFT's in frequency domain corresponds to circular convolution in time domain. (07 Marks) 3 Consider a FIR filter with impulse response  $h(n) = \{3, 2, 1, 1\}$  if the input is a.  $x(n) = \{1, 2, 3, 3, 2, 1, -1, -2, -3, 5, 6, -1, 2, 0, 2, 1\},\$ find the output y(n). Use overlap-add method assuming the length of block is 7. (09 Marks) b. Write a note on Chirp z-transform. (06 Marks) What is in-place computation? What is the total number of complex additions and c. multiplications required for N = 512 point, if DFT is computed directly and if FFT is used?

Also find the number of stages required and its memory requirement. (05 Marks)

**10EC52** 

USN

Fifth Semester B.E. Degree Examination, December 2012

- Derive DIT-FFT algorithm for N = 8 and draw the complete signal graph. 4 a. (12 Marks)
  - Find the IDFT of  $X(R) = \{0, 2 + 2j, -j4, 2 2j, 0, 2 + 2j, j4, 2 2j\}$  using inverse Radix 2 b. DIT-FFT algorithm. (08 Marks)

#### PART – B

- Design a Chebyshev analog low pass filter that has -3dB cut off frequency of 100 rad/sec 5 a and a stopband attenuation of 25 dB or greater for all radian frequencies past 250 rad/sec. Verify the design. (10 Marks)
  - b. Derive the s to z plane transformation based on finite backward difference method. Also show that the entire left half s-plane poles are mapped inside the smaller circle of radius  $\frac{1}{2}$ centered at  $z = \frac{1}{2}$  inside the unit circle in the z-plane. (10 Marks)
- Obtain the direct form II (canonic) and cascade realization of 6 a.

$$H(z) = \frac{(z-1)(z^2+5z+6)(z-3)}{(z^2+6z+5)(z^2-6z+8)}$$

the cascade system should consist of two biquadratic sections.

- b. Given  $H(z) = (1 + 0.6z^{-1})^5$ 
  - i) Realize in direct form
  - Realize as a cascade of first order sections only ii)
  - As a cascade of  $1^{st}$  and  $2^{nd}$  order sections. iii)
- Using rectangular window technique, design a lowpass filter with passband gain of unity, 7 a. cut off frequency of 1000 Hz and working at a sampling frequency of 5 kHz. The length of impulse response should be 7. (10 Marks)
  - With necessary mathematical analysis, explain the frequency sampling technique of FIR b. filter design. (10 Marks)
- 8 Design a digital filter H(z) that when used in A/D – H(z) – D/A structure, gives an a. equivalent analog filter with the following specifications:
  - PB Ripple  $\leq 3.01 \, \text{dB}$
  - PB Edge : 500 Hz
  - SB attenuation  $\geq 15 \text{ dB}$
  - SB Edge : 750 Hz
  - Sample rate : 2 kHz

The filter is to be designed by performing a bilinear transformation on an analog system function. Use Butterworth prototype. Also obtain the difference equation. (15 Marks)

b. If  $H_a(s) = \frac{1}{(s+2)(s+1)}$ ; find the corresponding H(z) using impulse invariance method for sampling frequency of 5 samples/sec.

(05 Marks)

\* \* \* \* \*

(10 Marks)

#### (10 Marks)



Fifth Semester B.E. Degree Examination, December 2012

# Analog Communication

Time: 3 hrs.

1

Max. Marks:100

## Note: Answer FIVE full questions, selecting at least TWO questions from each part.

## PART – A

- Define random variables and differentiate between discrete and continuous random a. variables. (07 Marks)
  - b. Define mean, correlation and covariance functions. (07 Marks) (06 Marks)
  - Define Gaussian process. List the properties. c.
- 2 Explain the generation of AM wave using square law modulator and show that the output of a. square law modulator  $V_2(t) = a_1 A_C \left[ 1 + \frac{2a_2}{a_1} m(t) \right] \cos 2\pi f_C t$ . (07 Marks)
  - Explain the operation of coherent detection of DSB-SC modulating wave and show that the b. overall output  $V_0(t) = \frac{1}{2} A_C \cos \phi m(t)$ . (07 Marks)
  - The AM wave is given by  $S(t) = A_c [1 + K_a m(t)] \cos 2\pi f_c t$  is applied to the system shown in c. Fig.Q2(c). Assume that the message signal m(t) is limited to the interval  $|w| \le f$  and that  $f_C >> w$ . Show that m(t) can be obtained from the square rooter output. (06 Marks)

- 3 Derive an expression for SSB modulated wave for which upper side band is retained. a.
  - (10 Marks) Fig.Q3(b) shows the block diagram of a two stage SSB modulator. The input signal m(t) b. consists of a voice signal occupying the frequency band 0.3 to 3.0 kHz. The two carrier frequencies are  $f_1 = 100$  kHz and  $f_2 = 10$  MHz.



Evaluate the following:

- The sidebands of DSB-SC modulated waves at the output of the product modulators. i)
- ii) The sidebands of the SSB modulators at the output of band pass filters.
- iii) The passbands and the guardbands of the two bandpass filters.
- iv) Sketch the spectrum of the signal at each stage. [Assume suitable m(f)] (10 Marks)

4

- What is vestigial sideband? Explain the process of generation and detection of VSB a. modulated wave using a carrier  $A_{\rm C} \cos 2\pi f_{\rm C} t$ . (09 Marks)
  - b. With a block diagram, explain how downward and upward frequency translation is achieved. (07 Marks)
  - c. The incoming signal has a midband frequency that may lie in the range of 530 kHz to 1650 kHz. The associated a bandwidth is 10 kHz. This signal is to be translated to a fixed frequency band centered at 470 kHz. Determine the tuning range provided by the local oscillator. (04 Marks)

#### <u> PART – B</u>

- 5 a. Derive an expression for single tone sinusoidal FM wave; Determine frequency deviation and modulation index. (06 Marks)
  - b. A carrier wave of frequency 100 MHz is frequency modulated by a sinusoidal wave of amplitude 20 volts and frequency 100 kHz. The frequency sensitivity of the modulator is 25 kHz per volt.
    - i) Find the approximate bandwidth pf the FM signal using Carson's rule.
    - ii) Find the bandwidth by transmitting only those side frequencies whose amplitude exceed 1 percent of the unmodulated carrier amplitude. Use universal curve shown in Fig.Q5(b) for this calculation.
    - iii) Repeat the calculations, assuming that the amplitude of the modulating signal is doubled.
    - iv) Repeat the calculations, assuming the modulation frequency is doubled. (08 Marks)



Fig.Q5(b)

- c. Explain the generation of narrow band FM wave using indirect method. (06 Marks)
- 6 a. Explain how foster-Seelay discriminator is used for FM demodulation. (08 Marks)
  - b. Explain non-linearity and its effect in FM system.
  - c. For a WBFM if narrow band carrier  $f_1 = 0.1$  MHz, second carrier  $f_2 = 9.5$  MHz, output carrier frequency is 100 MHz and  $\Delta f = 75$  kHz. Calculate multiplying factors  $n_1$  and  $n_2$  if NBFM deviation is 20 Hz. Draw the suitable block diagram of the modulator. (06 Marks)
- 7 a. Explain the following terms:i) Shot noise ii) Thermal noise
  - b. Derive and show that the noise equivalent band width for RC low pass filter is  $\frac{1}{100}$ .



#### (08 Marks)

- c. An amplifier of power gain 20 dB has an input consisting of 100  $\mu\omega$  signal power and 1  $\mu\omega$  noise power. If the amplifier contributes an additional 100  $\mu\omega$  of noise determine:
  - i) The output signal to noise ratio
  - ii) The noise factor and
  - iii) The noise figure.
- 8 a. Find the figure of merit in AM when the depth of modulation is (i) 100%, (ii) 50%, (iii) 30%. (06 Marks)
  - b. Show that the figure of merit of a noisy FM receiver for single tone modulation is  $3/2 \beta^2$ .
  - c. Write a short note on pre-emphasis and de-emphasis.

\* \* \* \* \* 2 of 2 (06 Marks)

(06 Marks)

# (06 Marks)

(10 Marks) (04 Marks)



**10EC54** 

# Fifth Semester B.E. Degree Examination, December 2012 **Microwaves and Radar**

Time: 3 hrs.

Max. Marks:100

### Note: 1. Answer FIVE full questions, selecting atleast TWO questions from each part. 2. Use of smith chart is permitted.

## PART - A

- 1 Derive transmission – line equations by the methods of distributed circuit theory. (09 Marks) a. A single stub turner is to match a lossless line of 400  $\Omega$  to a load of  $(800 + j300)\Omega$ . The b.
  - frequency is 3 GHz
  - i) Find the distance in meters from the load to the turning stub
  - ii) Determine the length in meters of the short circuited stub. (06 Marks) c. Define reflection coefficient and derive an expression for reflection coefficient at load in terms of load impedance.
    - (05 Marks)

(03 Marks)

(10 Marks)

- 2 Using the Helmholtz equation, derive the field equations for TE modes in rectangular a. waveguides. (09 Marks)
  - With a neat sketch, explain the four port microwave circulator and also obtain the b. S – matrix. (08 Marks)
  - An air filled rectangular waveguide of inside dimensions  $7 \times 3.5$  cm operates in the c. dominant TE<sub>10</sub> mode. Find
    - i) the cutoff frequency
    - ii) the phase velocity of the wave in the guide at a frequency of 3.5 GHz
    - iii) the guided wavelength at the same frequency.
- 3 With neat sketches, explain the IMPATT diode and draw the negative resistance curve. a.
  - (10 Marks) b. Explain the parametric amplifier with equivalence circuit. (10 Marks)
  - For a two port network, explain the S parameters and properties of S parameters. a.
    - (10 Marks) b. Explain the phase shifter, with neat sketches. (10 Marks)

### PART – B

- 5 With neat sketch, explain the operation of E – plane tee and also obtain its S- matrix. a.
  - With neat sketch, explain the operation of magic tee and mention its application. (10 Marks) b.

4

## **10EC54**

(06 Marks)

(06 Marks)

- With neat schematic diagram, explain the coplanar strip lines. 6 a.
  - A lossless parallel strip line has a conducting strip width  $\omega$ . The substrate dielectric b. separating the two conducting strips has a relative dielectric constant  $\in_{rc}$  of 6 and a thickness of 4 mm. Calculate :
    - i) The required width  $\omega$  of the conducting strip in order to have a characteristics impedance of  $50\Omega$
    - ii) The strip-line capacitance
    - iii) The strip line inductance
    - iv) The phase velocity of the wave in the parallel strip line. (08 Marks)
  - Write a note on shielded strip lines. c.

Derive an expression for simple form of the radar range equation. (05 Marks) a.

- With a neat block diagram, explain the conventional pulse radar with a super heterodyne b. receiver. (08 Marks) (07 Marks)
- Explain the applications of radar. C.

7

- Explain single delay line canceller and frequency response of the single delay line 8 a. canceller, and also obtain the expression for blind speeds. (10 Marks)
  - A VHF radar at 220 MHz has a maximum unambiguous range of 180 nmi. What is its first b. blind speed? (04 Marks)
  - With neat block diagram, explain the original moving target detector signal processor. c.

(06 Marks)



Time: 3 hrs.

1

Max. Marks:100

n-2

(08 Marks)

(08 Marks)

(10 Marks)

10EC55

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

## PART – A

- Define the following with respect to information theory: i) Self information a. ii) Entropy iii) Rate of information iv) Mutual information. (04 Marks)
  - Prove that the entropy of the following probability distribution function is  $2 \left(\frac{1}{2}\right)$ b.

Symbols: X<sub>n-1</sub>  $X_1$ X2 X3 . . . . Xn Probability of  $(x = x_i)$ : 1 1 1 1 1 . . . .  $2^{n-1}$ 8  $2^{n-1}$ 2 4

A sample space of events is shown in the diagram below with probability  $P = \left\{\frac{1}{5}, \frac{4}{15}, \frac{8}{15}\right\}$ , c.

- i) Evaluate average uncertainity associated with the scheme.
- ii) Average uncirtainity pertaining to the following probability scheme:
  - $P[A/M = B \cup C], P[B/M, C/M]$
- iii) Verify additive rule.
- Given the model of a Markoff source in Fig. Q2 (a) 2 a.



Fig. Q2 (a)

- State probability Find i) ii) Entropy of first order and second order source
  - Efficiency and redundancy of first order source iii)
  - iv) Find rate of information if  $r_s = 1$  sym/sec.
- Design an encoder using Shannons encoding algorithm for a source having six symbols and b. probability statistics P =  $\left\{\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{32}, \frac{1}{32}\right\}$ (10 Marks)
- 3 Consider a source with 8 alphabets A to H with respective probabilities of 0.22, 0.20, 0.18, a. 0.15, 0.10, 0.08, 0.05, 0.02
  - i) Construct a binary compact code and determine coding efficiency using Huffman coding algorithm.
  - ii) Construct ternary Huffman code and determine efficiency of the code. (10 Marks)
  - Prove that H(X / Y) = p.H(X) for a binary erasure channel. b.
  - c. Given the following channel matrix find the channel capacity:

$$P(Y_X) = \begin{array}{cccc} & y_1 & y_2 & y_3 \\ x_1 & 0.8 & 0.2 & 0 \\ x_2 & 0.1 & 0.8 & 0.1 \\ x_3 & 0 & 0.2 & 0.8 \end{array}$$

(05 Marks)

1 of 2

a.

4

- Define i) Differential entropy ii) Shannon's limit
- Prove that for an infinite bandwidth signal energy to noise ratio  $\frac{E}{E}$  approaches a limiting b. value. (06 Marks)
- A black and white TV picture may be viewed as consisting of  $3 \times 10^5$  elements, each of c. which occupies 10 distinct brightness levels with equal probability. Assume rate of transmission as 30 picture frames per sec and SNR = 30 dB. Using channel capacity theorem compute minimum bandwidth to error free transmission of video signal. (06 Marks)
- Prove that  $\lim_{B\to\infty} C = 1.44 \frac{S}{\eta}$ . d.

Consider a systematic (7, 4) linear block code, the parity check matrix, 5 a.

> 1 1 1  $\mathbf{P} = \begin{vmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \end{vmatrix}$

- i) Find all possible code words.
- ii) Draw encoding circuit.
- iii) A single bit error has occurred in each of the following code words given:  $R_A = [0 \ 1 \ 1 \ 1 \ 1 \ 1 \ 0],$  $R_{\rm B} = [1\ 0\ 1\ 1\ 1\ 0\ 0]$ Detect and correct these errors
- iv) Draw syndrome computation circuit.
- b. Find generator matrix G and H-matrix for a linear block code with  $d_{min} = 3$  and message block size of 8 bits. (04 Marks)
- Test hamming bound of (7, 4) hamming code and show that it is a perfect code. C. (04 Marks)
- Design an encoder for (7, 4) binary cyclic code generated by  $G(x) = 1 + x + x^3$  and verify its 6 a. operation using message vectors (1 0 0 1) and (1 0 1 1). Also verify the code obtained using polynomial arithmetic. (10 Marks)
  - For a (7, 4) cyclic code with received vector Z is 1 1 1 0 1 0 1, with the generator b. polynomial  $G(x) = 1 + x + x^3$ . Draw the syndrome computation circuit and correct, the error in the received vector. (10 Marks)
- 7 Write short notes on: a. Shortened cyclic codes b. Golay codes. c. BCH codes. d. RS codes. (20 Marks)
- For the convolution encoder shown in Fig. Q8 (a). 8 a.
  - Find impulse response and hence calculate the output produced by the information i) sequence (1 0 1 1 1).
  - ii) Write the generator polynomials of the encoder and recompute the output of the input of (i) and compare with that of (ii). (08 Marks)



b. Consider a (3, 1, 2) convolution encoder with  $g^{(1)} = 1 \ 1 \ 0$  and  $g^{(2)} = 1 \ 0 \ 1$ ,  $g^{(3)} = 1 \ 1 \ 1$ . Draw encoder block diagram, find generator matrix. Find code vector corresponding to information sequence  $D = 1 \ 1 \ 1 \ 0 \ 0$  using time and frequency domain approach. Draw state diagram and code tree. (12 Marks)

## 10EC55 (02 Marks)

(06 Marks)

(12 Marks)

**USN** 

10EC56

(04 Marks)

(05 Marks)

# Fifth Semester B.E. Degree Examination, December 2012 Fundamentals of CMOS VLSI

Time: 3 hrs.

Max. Marks:100

#### Note: Answer FIVE full questions, selecting at least TWO questions from each part.

#### PART – A

- a. Explain the nMOS fabrication process with neat diagram. (10 Marks)
   b. Obtain the dc transfer characteristics of a CMOS inverter and mark all the region showing the status of PMOS and NMOS. (10 Marks)
- 2 a. Compare CMOS and bipolar technologies.
  - b. Draw the circuit schematic and stick diagram of CMOS 2 input NAND gate. (06 Marks)
  - c. Draw the layout for the schematic shown in the Fig.Q.2(c). (10 Marks)



- a. Explain the operation of CMOS dynamic logic. Also discuss the cascading problem of dynamic CMOS logic. (10 Marks)
  - b. Realize Z = A(B + C) + DE for clocked CMOS logic.
  - c. Find the equation for the node voltages V<sub>1</sub>, V<sub>2</sub>, V<sub>3</sub> during logic "1" transfer, when each pass transistor is driving another pass transistor, as shown in Fig.Q.3(c). Assume threshold voltage of each transistor is V<sub>tn</sub>. (05 Marks)





3

a. Find the scaling factors for:

4

i) Channel Resistance Ron
ii) Current density J.
b. Derive the equation for rise time and fall time for CMOS inverter.
c. Write a note on limitations of scaling.
(06 Marks)
(06 Marks)

#### PART – B

| 5 | a.<br>b. | Explain structured design of bus arbitration logic for n-line bus.<br>Explain dynamic 4-bit shift register using CMOS logic. | (10 Marks)<br>(10 Marks) |
|---|----------|------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| 6 | a.       | Design 4-bit ALU to implement addition, subtraction, EXOR, EXNOR, OR operations.                                             | and AND (10 Marks)       |
|   | b.       | With the neat diagram, explain Braun array multiplier.                                                                       | (10 Marks)               |
| 7 | a.       | Explain the working of three-transistor dynamic RAM cell.                                                                    | (06 Marks)               |
|   | b.       | Explain one transistor dynamic memory cell with schematic and stick diagram.                                                 | (06 Marks)               |
|   | c.       | Discuss CMOS pseudo-static memory cell with stick diagram.                                                                   | (08 Marks)               |
| 8 | a.       | Explain sensitized path-based testing for combinational logic.                                                               | (10 Marks)               |
|   | b.       | Write a note on ground rules for successful design.                                                                          | (10 Marks)               |